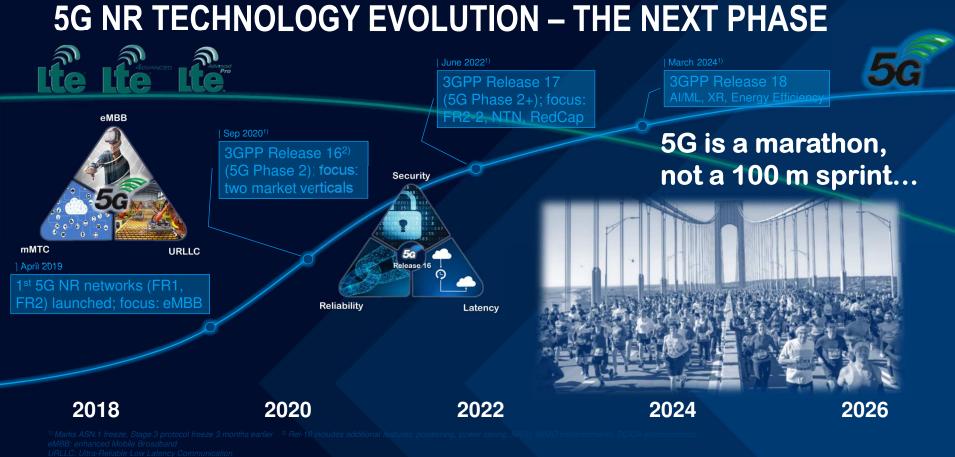
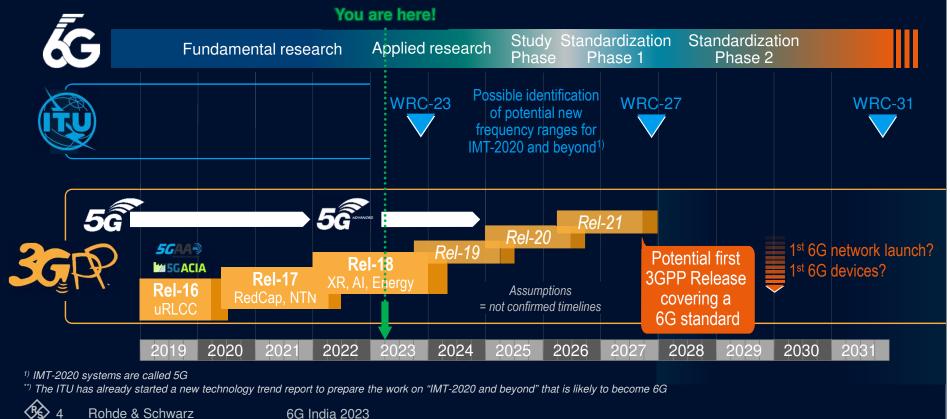
6G India 2023 International Conference **ON THE VERGE OF 6G**

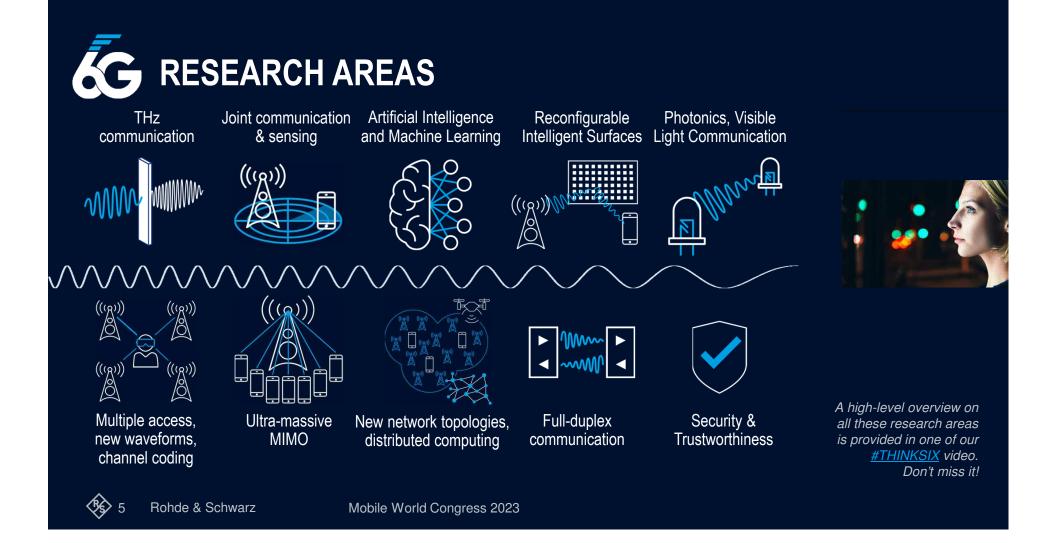
Mahesh Basavaraju Market Segment Manager Wireless Communications

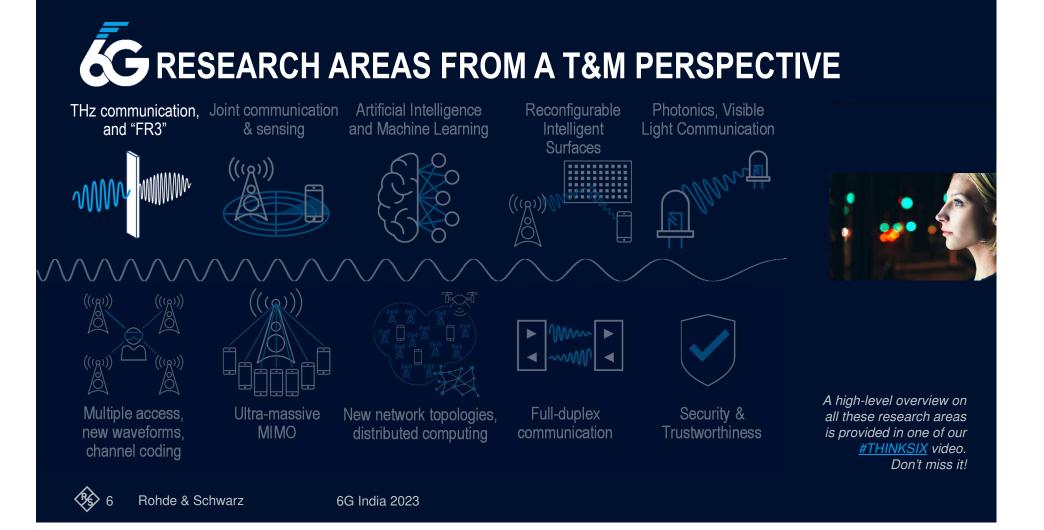
ROHDE&SCHWARZ


Make ideas real

AGENDA

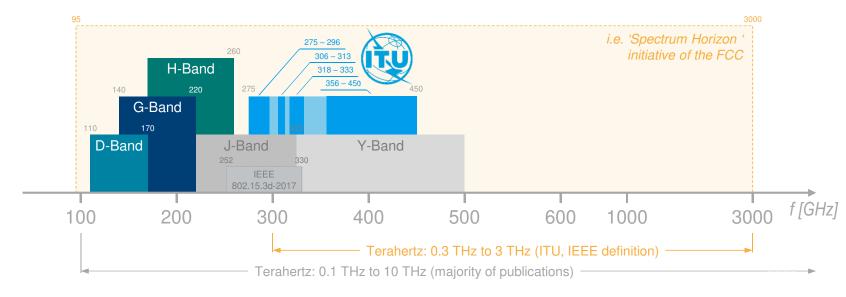

- ► 6G research areas
 - THz and FR3
 - Joint Communication and sensing (JCAS)
 - Artificial Intelligence / Machine Learning (AI/ML)
 - Reconfigurable Intelligent Surfaces (RIS)
- 5G evolution and 6G timeline
- Summary





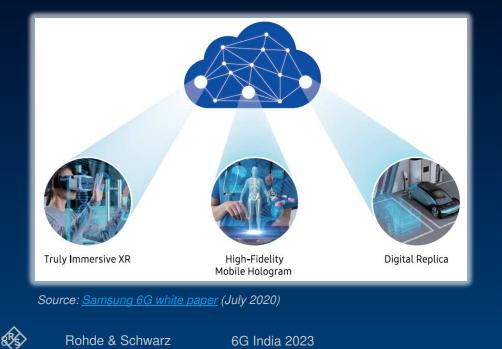
URLLC: Ultra-Reliable Low Latency Communication

FUTURE STANDARDIZATION AND REGULATORY ROADMAP



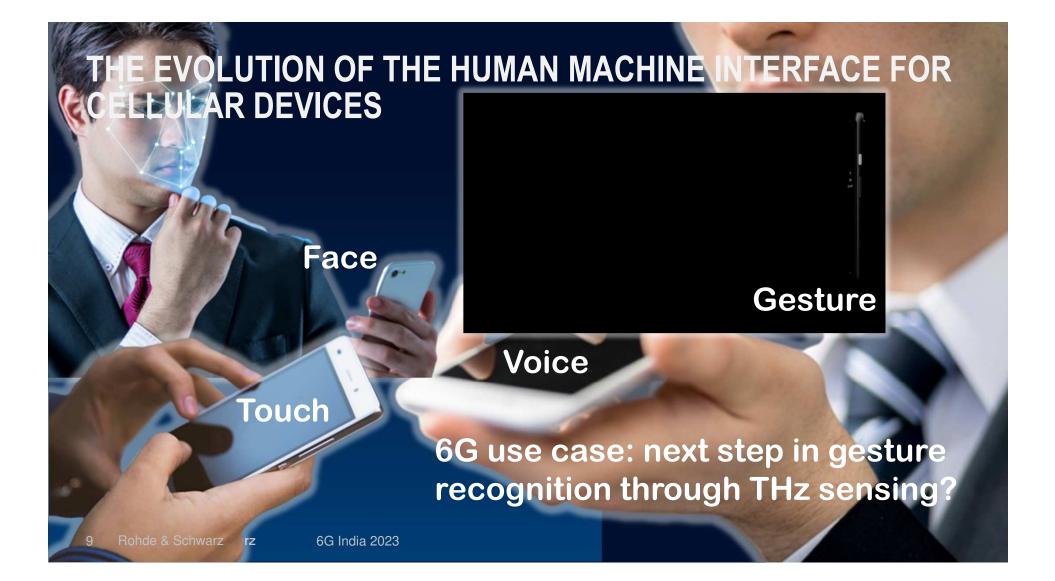
WHAT FREQUENCIES ARE WE TALKING ABOUT FOR 6G?

Let's be clear, a future 6G standard will also work below 100 GHz, below sub-6 and 1 GHz!



► (sub-)THz will "just" be another frequency layer!

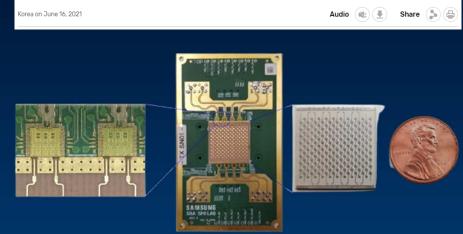
7 Rohde & Schwarz


WHAT PROBLEM IS 6G TRYING TO SOLVE WITH SUPPORT OF (SUB-)THZ?

- ► An attempt of an explanation: eXtended Reality (XR)
 - Provide higher data rates (Tbps) and lower latency

	Parameter	Quasi	Basic	Ultra						
	Frame rate	25~30 fps	50~60 fps	100~120 fps						
	Bit-per-pixel	8 bit	10 bit	12 bit						
	1/2 screen	~70 Mbps	~175 Mbps	~350 Mbps						
	3D+panorama	~840 Mbps	~2.1 Gbps	~4.2 Gbps						
	Motion-to- photon latency		< 20 ms							
spor ~2	<pre>/R headset /R he</pre>									

AR


SO, WHAT MIGHT BE NEXT?

- Use of phased arrays antennas (e.g. linear arrays) to "monitor" the space in front of the person, that is using the AR/VR headset, for motion of one or both hands & arms
- ► Required range ≤ 1.5 m, but what about resolution?
- ► Higher resolution required to detect particular movements → wider bandwidths required → move to higher frequency, i.e. sub-THz (e.g. 340 GHz)

10 Rohde & Schwarz

OUR CUSTOMERS ARE ACTIVELY WORKING ON THIS TECHNOLOGY

Samsung Electronics and University of California Santa Barbara Demonstrate 6G Terahertz Wireless Communication Prototype

CMOS-based D-Band (110 to 170 GHz) RFIC with 128 antenna array elements
2 GHz BW, MIMO 2x2, 16QAM lead to 6.2 Gbps (E2E) over 15 m distance

https://news.samsung.com/global/samsung-electronics-and-university-of-california-santa-barbara-demonstrate-6g-terahertz-wireless-communication-prototype [June 2021]

Rohde & Schwarz

BUT SO DO WE... COLLABORATION WITH UNIVERSITY OF TEXAS IN AUSTIN

Testing RF switches @ D-Band w/ R&S®ZNA43 & R&S® ZC170

& Schwarz and FormFactor × +

C 🛆 le rolde-schwarz.com/u/about/news-press/all-news/holde-schwarz.and-formfactor-support-the-university-of-texas-at-autin-in-research-on-improved-rf-switches-for-5g-and-5g-press-release-detailpage_22935... 😰 🌣 📀 S 🗶 💷 0) 💩 A 🛸 🛱 🧶 :

Munich / 13-Jan-2022

Rohde & Schwarz

Rohde & Schwarz and FormFactor support the University of Texas at Austin in research on improved RF switches for 5G and 6G

The University of Texas at Austin, Rohde & Schwarz and FormFactor have collaborated to characterize a new technology for RF switches that improves battery life performance and supports higher bandwidths and switching speeds.

The R&S ZNA connected to R&S ZC170 frequency extenders allows S-parameter measurements in the D-band. (Image: Rohde &

In 2020, the University of Taxas at Austin (UT Austin) published ground-breaking research results on a new RF switch technology based on hexagonal Boron nitrite (hBN). The technology is energy efficient and allows higher bandwidths

- 0 ×

More background info: https://spectrum.ieee.org/atomthin-switches-5g-6g-radio-signals

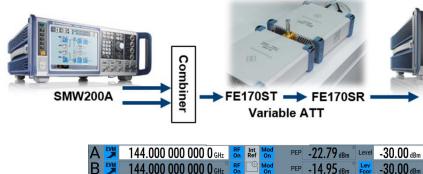
6G I

FE170ST / FE170SR FRONTENDS EXTEND THE FREQUENCY RANGE TO 110 GHz TO 170 GHz

TELPV

RFA

RF B


ELPV

FE170ST

RF R

I/Q Mod A

I/Q Mod B

AWGN

On On

Baseband

🗸 On

► Compact form factor

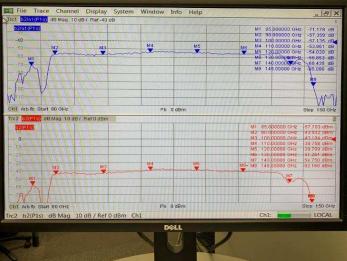
 Only three connections needed (IF, reference frequency, LAN)

EVM (%)

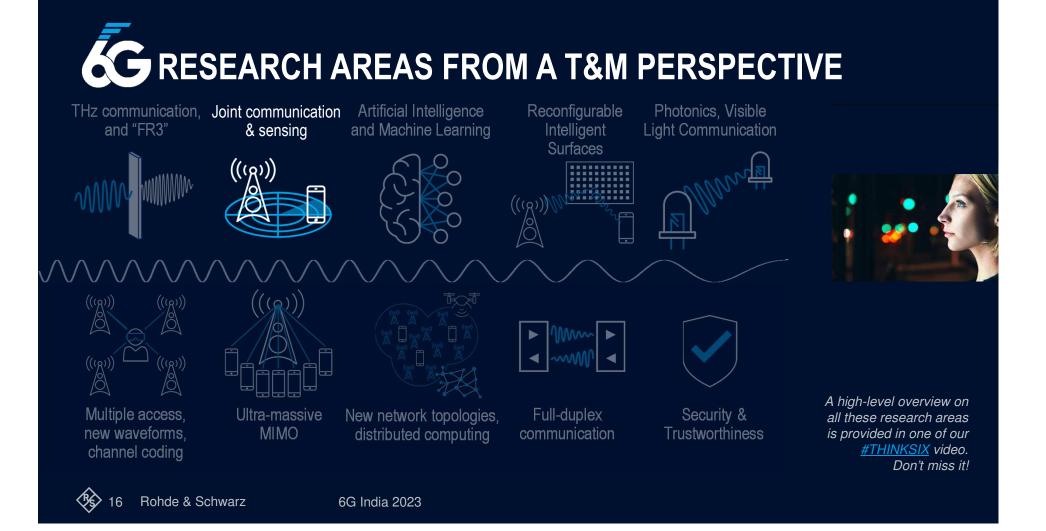
-2.48 Power -26.74 -28.68 d8m 9 Mag(Capture Buffer) •1 Clinv 4 Symbols (Hexadecima display of the baseline	RetLevel -3.000 d/m Capture Length 8000 Modulation 15Q/M Result Length 8000 • Att 0.08 Freq. 144.0 GHz Symbol Rate 4.0 GHz Ta Filter RC Imp: borker in Hings Imp: borker Imp: borker in Hings Imp: bo			•	2	1 1 1 1 1 1 1 1 1 1		🔄 scpi	□ ₹?	? +		Ø
Att 0.08 Freq 144.0012 Symbol Rate 4.0012 Tx Filter PRC The:there Provides Topulates Top: birder Provides Topulates Top: birder Provides Topulates Top: birder Provides Topulates Top: birder Provides Topulates T	Att 0.01 Freq 1440 045 Symbol Rate 4.0 045 To Filter 2850 The there is hand 10 participate Sequences To filter 100 (MeassBRef) To filter 1	MultiView	Spect			IQ Analyze		VSA >	٢			
The Lattree Life Life Hugh TIG Bypass Equivaluzes Const L/Q(MeassRef) Disc. No. (1) 2 Result Summary Loss L/Q(MeassRef) Loss L/Q(MeasRef) Loss L/	Inc: Lother JP ringh TGD Bypass EQUALIZER. IDD NOTE 2 Result Summary I Const I/Q(MeasBRef) IDD Press Current Peak 17.82 I Const I/Q(MeasBRef) IDD PR Peak 13.51 69.99 % III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									Length 8000		
Current Peak Unit 0 <	Even Fund Current Peak Unit WER Peak 12.51 63.93 % MER Peak 31.06 13.93 % Phase Error Peak 31.06 13.93 % Magnitude Error Peak 31.06 13.93 % Magnitude Error Peak 9.00 178.33 deg Symbol Rate Error Peak 0.00 30.80 2.12 Magnitude Error Peak 0.00 0.99 22.0 0.962.27 Fito 0.000 <td>Inp: ExtFe IF Hig</td> <td>n ті вура</td> <td>SS EQUAL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Inp: ExtFe IF Hig	n ті вура	SS EQUAL								
EVM PNS 2.79 17.82 % Poak 1.60 69.99 % MER RMS 31.06 14.89 66.99 % MER RMS 31.06 14.89 66.93 % Magnitude Error Poak 1.49 1.123 66.99 % Magnitude Error Poak 2.12 11.37 % Poak 1.180 60.92 % Violation For provide 1.180 60.92 % 0.999 2.22 9.982 7.90 1.08 8.092 % V/O Offset V/O Offset 1.00 0.999 2.22 9.982 2.80 0.000 0.000 0.000 3.000 0.000 3.000 0.0	EVM RMS Peak Phase Error 2.79 Phase Phase 17.82 (1.5) % (1.5) •	1 Const I/Q(M	eas&Ref)		1	low	high 1 D	2 Result Sun	nmary	Current	Peak	Unit
Peak Peak 18.06 3.10. descent Phase Error Peak 1.43. 12.54. deg Phase Error Peak 2.09. 1.78.33. deg Peak Peak 2.12. 11.37.3%. Peak Peak 2.09. 2.12. 11.37.3%. Peak Peak 2.12. 11.57.3%. 2.12. 11.57.3%. Carrier Frequency Peak 7.16.43. -280.59.2%. 2.16.2%. 2.00.59.2%. 2.00.5%.2%. V/Q Skew Peak -9.99.22.0	Peak 18.06 3.10 des Phase Error Peak 14.36 3.12 des Magnitude Error Peak 14.36 12.54 deg Carrier Frequency Error Peak 14.35 3.12 deg Carrier Frequency Error Peak 0.350 72.18 deg Carrier Frequency Error 0.350 72.18 deg 0.399 72.78 3009 72.78 V Onlog Earle Error Peak 0.399 72.78 3009 72.78 3009 72.78 3009 72.78 3009 72.78 3009 72.78 3009 72.78 3009 72.78 3009 72.78 3009 72.78 3009 72.78 73.13 73.78 <th< td=""><td></td><td></td><td></td><td>-0-</td><td>•</td><td></td><td></td><td>Peak</td><td>2.</td><td>79 17.82 51 69.99</td><td>% %</td></th<>				-0-	•			Peak	2.	79 17.82 51 69.99	% %
Peak Peak 9.09 1.78.38 deginal Agnitude Error Peak 2.12 11.37 % Peak Peak -11.80 60.92 % Peak -11.80 60.92 % -447.34 -360.92 % Vision Rate Error 0.55 -10.6 pm % -0.99 222 0.988.347 pm V/Q Offset V/Q Offset -9.99 22.22 .0988.347 -443.83 db db 0.04 0.55 -449.5 db 0.000.23 .0	Peak Pagnitude Error 9.09 Peak Peak Peak Peak Peak Peak Peak Peak								Peak	18.	06 3.10	dB
Application The second s	Magnitude Error 21.2 11.37 % Carrier Frequency 11.37 % 11.37 % Carrier Frequency Frequency 11.37 % 11.37 % Symbol Rate Error Symbol Rate Error 0.55 -1.06 ppn File No (feet 0.99 22 0.969 23 File I/O (Skew 0.99 22 0.969 23 # Carrier Old 0.04 0.05 # 0.04 0.05 # 0.05 # 0.05 # 0.05 # # 0.05 # 0.05 # 0.05 # # 0.05 # 0.05 # 0.05 # # 0.05 # 0.05 # # 0.05 # # 0.05 # # 0.05 # # 0.05 # # 0.05 # # # # # # # # #		-6-	0	-0-	•			Peak	-9.	-178.38	deg
Open Symbol Rate Error I/Q SNew 0.55 0.999 212 0.999 212 0.900 003 -1.06 0.999 212 0.900 213 0.900 003 -1.06 0.999 212 -48.87 -1.06 -48.87 -1.06 -900 -900 003 -1.06 -900 -900 003 -1.06 -900 003 -1.06 -900 003 -1.06 -900 003 -1.06 -900 003 -1.06 -900 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003 -2.08 000 003	Symbol Rate Error I// Skew 0.55 -1.06 pm ph 1// Skew 0.999 213 0.968 77 Pk 1// Skew 1// Skew 0.999 213 0.968 77 Pk 1// Skew 1// Skew 0.999 213 0.968 77 Pk 1// Skew 1// Skew 0.999 214 0.968 77 Pk 2.48 2.48 0.900 0.03 0.000 0.03 0.000 0.13 0.000 0.13 0.000 0.13 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0		×.						Peak	-11.	80 60.92	%
I/Q Skew 0.999 2.22 0.969 2.47 0.999 2.22 0.969 2.47 I/Q Offinition I/Q Offinition I/Q Offinition 0.999 2.22 0.969 2.47 0.999 2.22 0.969 2.47 I/Q Offinition I/Q Offinition I/Q Offinition 0.999 2.22 0.969 2.47 0.999 2.22 0.969 2.47 I/Q Offinition I/Q Skew I/Q Skew -48.04 0.65 2.68 Quadrature Error 0.19 0.000 0.000 0.000 0.01 (d/2/m) -28.74 -28.68 86 3 Mag(Capture Buffer) •1 Clev •1 Symbols (Hexadecima 0.18 0.14 0.17) 10 F 1.4 S + 5 + 7 9 + 11 s + 13 + 15 13 8 9 A 0 7 10 8 1 5 0 4 E C 0 7 5 1 8 9 A 0 7 10 9 D 2.1 8 0 1 A 0 7 10 9 D 10 1 9 2 1 8 C 1 0 7 7 8 1 9 0 10 9 D 10 9 D 1 9 2 1 8 C 1 0 7 7 1 9 0 10 9 D 10 9 D 1 9 2 1 8 C 1 0 7 7 1 9 1 9 D 10 9 D 1 9 2 1 8 C 1 0 7 7 1 9 1 9 D 10 9 D 1 9 2 1 8 C 1 0 7 7 1 1 9 D 10 9 D 1 9 2 1 8 C 1 0 7 7 1 1 9 D 10 9 D 1 9 2 1 8 C 1 0 7 7 1 1 9 D 10 9 D 1 9 D	Image: Construct of the second seco				-			Symbol Rate	ency Error Error	0.	55 -1.06	
	Image: constraint of the state of		1		7	4		Rho		0.999 2	22 0.968 247	
Quadrature Error Amplitude Droop -2.48 0.29 0.32 deg 2.08 def 2.48 deg 2.48 def 2.48 deg 2.48 deg 2.48 <thdeg 2.48 2.48 <thd< td=""><td>Quadrature Error 0.29 0.000 013 0.23 0.000 014 0.000 014 0.25 0.000 014 0.23 0.000 014 0.000 014 0.25 0.000 014 <th0.25 0.000="" 014<="" <="" td=""><td></td><td>-</td><td>•</td><td></td><td></td><td></td><td>I/Q Imbalan</td><td></td><td>-48.</td><td>87 -48.38</td><td></td></th0.25></td></thd<></thdeg 	Quadrature Error 0.29 0.000 013 0.23 0.000 014 0.000 014 0.25 0.000 014 0.23 0.000 014 0.000 014 0.25 0.000 014 <th0.25 0.000="" 014<="" <="" td=""><td></td><td>-</td><td>•</td><td></td><td></td><td></td><td>I/Q Imbalan</td><td></td><td>-48.</td><td>87 -48.38</td><td></td></th0.25>		-	•				I/Q Imbalan		-48.	87 -48.38	
-2,48 2,48 Power -28,74 -28,64 -28,74 -28,64 -28,74 -28,64 -28,74 -28,64 -28,74 -28,64 -28,74 -28,74 -28,64 -28,74 -28,64 -28,74 -28,64 -28,74	-2.48 2.48 Power -28.74 -28.68 dbm 3 Mag(Capture Buffer) 0.1 Clow 3 Clow 1 + 1 + 3 + 5 + 7 + 7 + 9 + 11 + 13 + 15 + 10 + 10 + 10 + 10 + 10 + 10 + 10		T	Y.	×	1				0.	29 0.32	deg
3 Mag(Capture Buffer) ●1 Crive 4 Symbols (Hexadecima 1 1 3 5 7 7 9 1 1 3 9 1 1 1 3 5 1 1 3 9 1	3 Mag(Capture Buffer) • 1 Cirk ≠ Symbols • (Hexadecimal) • 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 • • 1 + 0 + 5 + 7 + 9 + 11 + 13 + 15 • • 1 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 13 + 15 • • 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	-2.48					2.48		оор			
0 7 0 F D C 1 E 4 7 0 3 8 9 A 0 7 16 B 5 0 4 E 6 C 5 B E A F 5 B 9 0 16 B 5 0 4 E 6 C 5 B E A F 5 B 9 0		3 Mag(Capture	Buffer)				o1 Cirw	4 Symbols			(Hexa	decimal)
		-20 dBm-	1									
			1	L. L. L.	in the second		L	16 B	5 0 4 E	6 C 5 B	E A F 5 B	9 0
		Manager a bill	Halded	donthas	als'w	uda bili bili	Add to a the factor of the fac	48 6	2 F D C	D 3 C 7	1 A F 5 4	7 F
96 F 7 F 2 4 6 E C 2 4 D 0 7 A 3 5 112 C 8 E 0 1 B 1 B 9 3 A F F 1 2 8		-88 d8m							D 0 E B 9 8 2 0		C D A C O	9 9

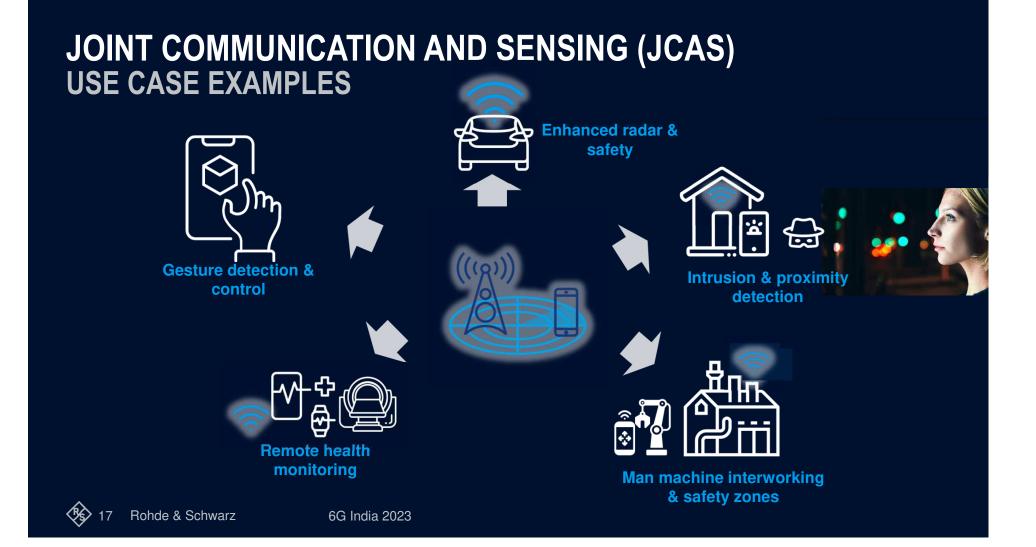
13

Rohde & Schwarz


IP: 10.215.0.108

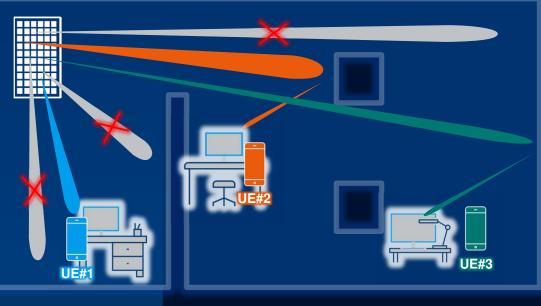
SIMULTANEOUSLY WE TAKE THE NEXT STEP TOWARDS FULL OVER-THE-AIR TEST SOLUTIONS FOR D-BAND (110-170 GHz)


Initial realization: 90 to 140 GHz – full D-band support under development



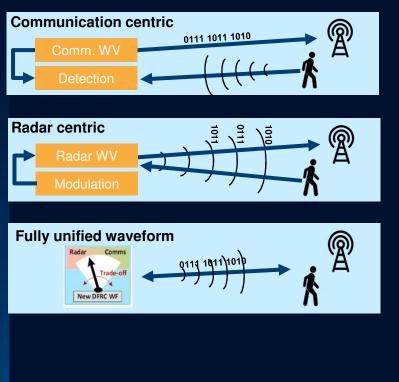
14 Rohde & Schwarz

6G WILL TAKE ADVANTAGE OF FR1 AND FR2 THz AND "FR3" WILL BE ANOTHER FREQUENCY LAYER


JOINT COMMUNICATION AND SENSING (JCAS) MOTIVATION AND RESEARCH CHALLENGES

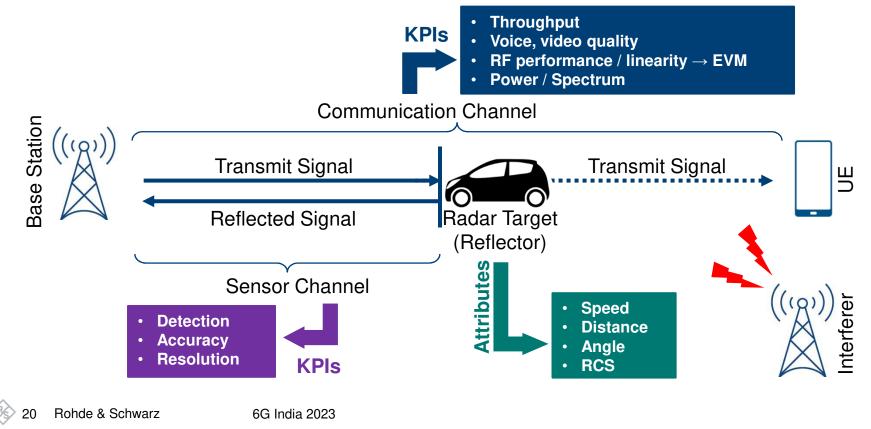
6G India 2023

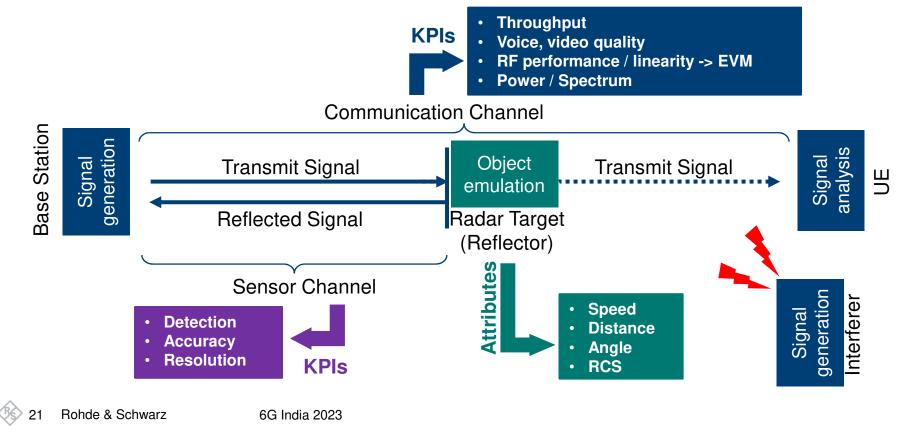
- Design a communication signal that can be used for objection detection, tracking, recognition, localization, and imaging
- Sensing-assisted communication by utilizing sensed information to aid beam management/alignment, CSI acquisition, medium-aware links, interference mitigation, etc.
- Research challenges
 - What frequency/bandwidth?
 - Waveform design (e.g. PAPR)?
 - Full duplex transceivers?
 - Interference? Distributed sensing?



Rohde & Schwarz

JOINT COMMUNICATION AND SENSING (JCAS) MOTIVATION AND RESEARCH CHALLENGES


- ► Integrated JCAS system using single transmitted waveform and full-duplex operation:
 - Communication-centric design, with guaranteed communication performance (e.g. OFDM-based)
 - Radar-centric design, optimized for sensing performance (e.g. using chirp signals as information carriers → PC-FMCW)
 - Jointly optimized design, with freely scalable sensing and communication performance trade-off

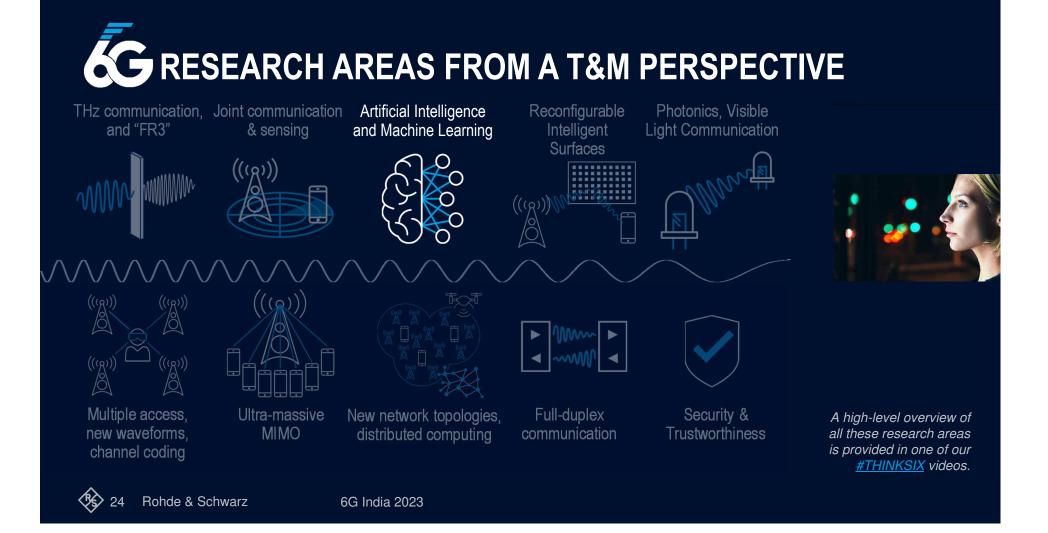


Rohde & Schwarz

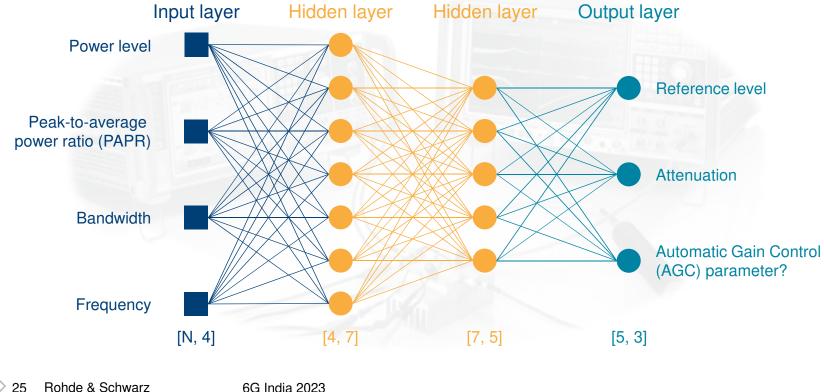

JOINT COMMUNICATION AND SENSING DIFFERENCES IN PERFORMANCE INDICATION

JOINT COMMUNICATION AND SENSING DIFFERENCES IN PERFORMANCE INDICATION

JOINT COMMUNICATION AND SENSING HOW TO TEST JCAS KPI – SOME INITIAL T&M CAPABILITIES


Rohde & Schwarz

TESTABILITY OF JOINT COMMUNICATION AND SENSING (JCAS) DEMONSTRATION OF OUR CURRENT CAPABILITIES



Rohde & Schwarz

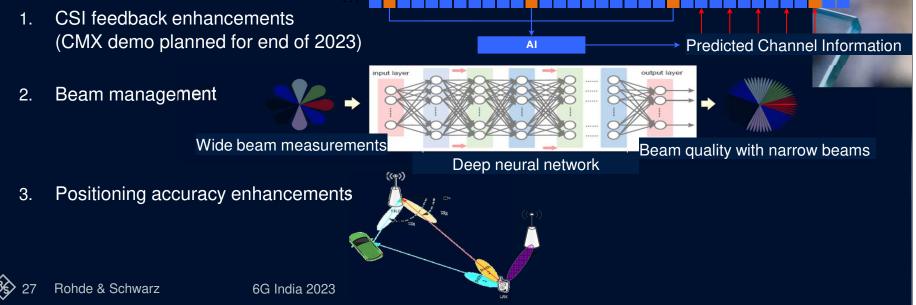
MACHINE LEARNING IS BASED ON NEURAL NETWORKS (NN) HOW ABOUT BEST ERROR VECTOR MAGNITUDE (EVM)?

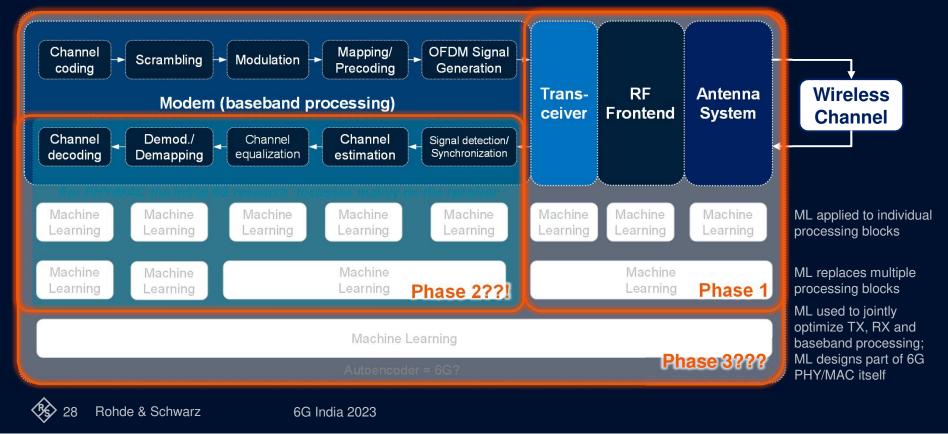
25

DOING "MACHINE LEARNING FOR THE SAKE OF MACHINE LEARNING" MAKES NO SENSE – USE CASE IS IMPORTANT!

Optimizing instrument parameters related to EVM by push of simple button (not ML-based!)

processing for 5G NR	EVM 7 ACL	R / SEM	meas	urements		17	?					Ō	Auto Set		🔯 SMW200A-2	[Runi
MultiView 📰 Spectru		5G NR	×												File Machine	View
Ref Level 0.00 dBm Freq				, 100 MHz	Cantura	Time 20	0.00	DWD/CC	01						EVM	1.0
Att 10 dB		me Count	Some in	1 of 1(1)		mine ze	1	0111700	~							1.0
YIG Bypass		ne ooune		1011(1)	riune								Auto		EVM	1.
	= I/Q Export 01 Cl	w 3 EVN	I vs Car	rier 💶	Avg 21	Min • 3 M	ax 4A	lloc ID vs	s Symbo	X Carr	ier					1.
Frame Start Offset : 4.991646856 ms							P	SS S DMR SPDSCI	SS PBO		ORESETCO	REFET	Auto			
							PBCH	DMRSPDSC	H DMRSCSI	RS P D		NorUse	EVM		I/O Mountator E	
0.389		15 %														
-su aim : 10° - Alin India India India India India India	n Marana da Tarana	10 %					- 61						Window	1	• General	Аг
		5.96-											Auto Scale All		State	
0.0 ms 2.0 ms/	20.0	ms 0 Hz		9.5 MH		95.04 M							Restore Sca	10	13	_
2 Result Summary Frame Results Averaged	Mean L	.imit	Max	Frame Averaged Min	5 Pov	wer Spe	ctrum	01 Cirw		asured : 65	n Diagra	m	Window		I/Q Swap	
EVM PDSCH QPSK (%)		.imit 8.50	Max 0.87	Min 0.87					Points M6	asarea : 63	0244					
EVM PDSCH QPSK (%)		3.50	0.87	0.87	-60 dB											
EVM PDSCH 18QAM (%)		9.00													1 1 1 1 1 1	
EVM PDSCH 2560AM (%)			Auto EVM						1000						Baseband G	ain
Results for Selection BWP/							_									
EVM AII (%)	0.87		Adjus	sting Leve	l settir	ngs to f	ind opt	timal EV	/М.							
EVM Phys Channel (%)	0.87															
EVM Phys Signal (%)	0.86		This	can take s	everal	minute								-	Linearize R	1
Frequency Error (Hz)	-70.13 ±1	412											Auto Leve	et 🛛		
Sampling Error (ppm)	-0.00												Config			
I/Q Offset (dB)	-81.62						ок	Cance	al				1			
I/Q Gain Imbalance (dB)																
I/Q Quadrature Error (°)	-				-										C Adjus	t 1/0
OSTP (dBm)	-8.31				191 d	fim/Hz-										100
Power (dBm)	-8.63		-8.31	-55.03												
Crest Factor (dB)	12.87				_ل_ا								Overview			
					0 Hz		122	.88 MHz								
			Syn	c Found					▼ Me	asuring.			13.05.202 15:14:4			
				FREQ SPAN	AMPT	AUTO	MKR	PEAK	7	8 9	GHz s -dBm V	_	Δ,	-		
				Jan Stan		SET		SEARCH		abc def		\$				
() PRESET MODE	SETUP	동민(연				TRIG	MKR	MKR.>	4 ghi	5 6 jkl mnd	MHz ms d8m mV	_	- t			
() PRESET MODE	SETUP	E+E (C		BW SWEEL	P TRACE	1190	FUNC	and the second s					and the second se		Oustan	
	SETUP			BW SWEEL	1.000		RUN	RUN CONT	1	2 3 tuv wxy	kHz µs dB µV	•	0 0		System Config	5
ROHDE				MEAS CONFI	1.000	INPUT/	RUN		1	2 3	kHz µs dB µV Hz ns	ESC	BACK SPACE ENTER	2		

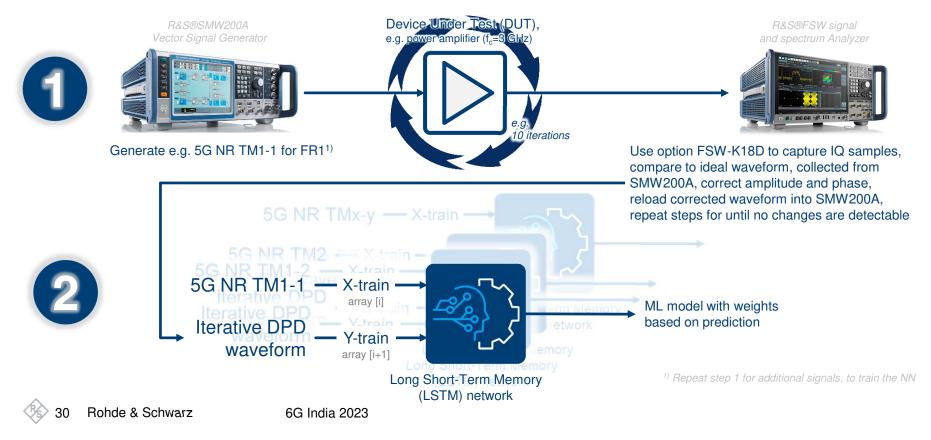

SMW200A-2 [Running] - Oracle VM Virtu	alBox					- 0	×
e Macrin View Input Devices He		_	_				
1.000 000 00	0 000 GHz	RF Int Off Ref	Mod Pl	- 30.00 a	Bm Level	-30.0) O dBm
1.000 000 00	0 000 GHz	RF 🗍	Mod Pl	- 30.00 d	Bm Level	-30.0) () dBn
) Moundtor B						_	×
General O Analog Impairments	O Digital Impair	ments					
State	0		Source		Inte	ernal Bas	eband
I/Q Swap			I/Q Wideban	d			
		Internal E	aseband				
Baseband Gain			Optimization	Mode			-
		4 dB					Fas
Linearize RF			Adjust	Linearization Cu	rrent Frequen	су	
Adjust I/Q Modulator Current	Frequency		Optimize EV	N			\checkmark
-							
	Terra I	_				_	-
System V/O Modulator B							
				D ()		-0	Rich Ord


Rohde & Schwarz

FIRST STEPS IN 5G-ADVANCED (3GPP RELEASE 18) STUDY ON ARTIFICIAL INTELLIGENCE/MACHINE LEARNING

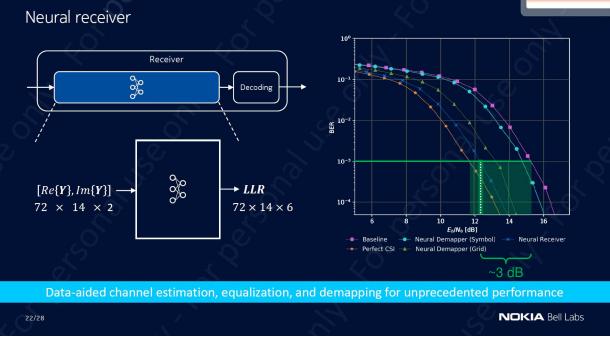
- Augmentation of air interface by AI/ML is explored
- Study is scheduled throughout the complete release until end of 2023
- Starting with only three use cases to assess performance in comparison to traditional methods & specification impacts:

WHAT POTENTIALLY COMES NEXT? AI-NATIVE AIR INTERFACE FOR 6G


The potential roadmap for AI/ML in 6G PHASE 1 IS RF FOCUSED AND NOT **NECESSARILY 6G RELATED!**

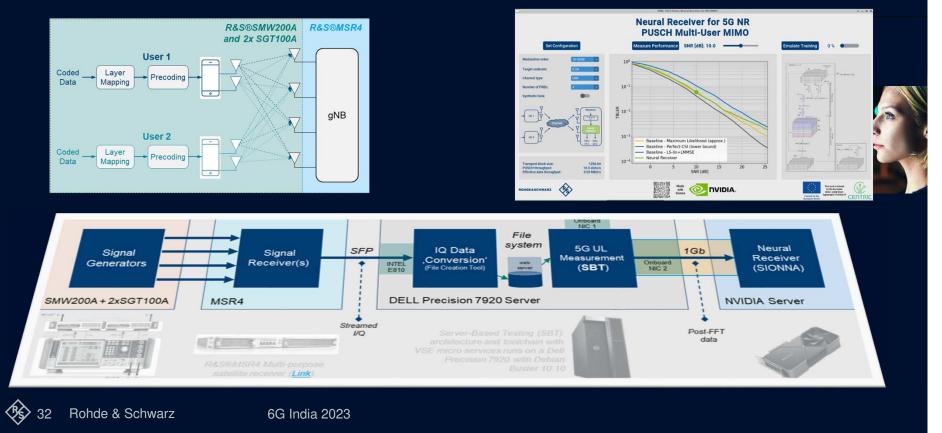
 Optimization of RF Frontend, modelling the non-linearities, analog and digital impairments seems to be an 'easy' entry point for applied machine learning in wireless communication.

<page-header><text><text><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></text></text></page-header>	<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>	<page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></page-header></page-header></page-header>	<page-header><page-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></page-header></page-header>
The web khanal and a chain chainer a stations are three an alternative, we high chain strange of the station of	(June 2020)		(Oct 2020)


MACHINE LEARNING FOR DIGITIAL PRE-DISTORTION (DPD) GENERAL DATA COLLECTION AND TRAINING PROCEDURE

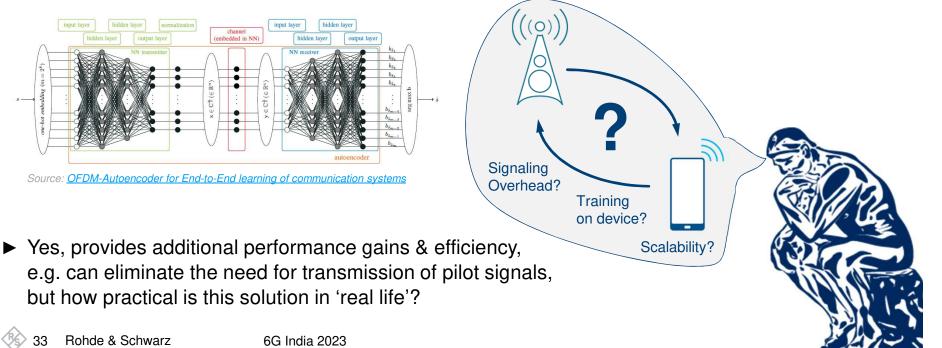
Status of AI/ML in wireless communication: Academia & Research

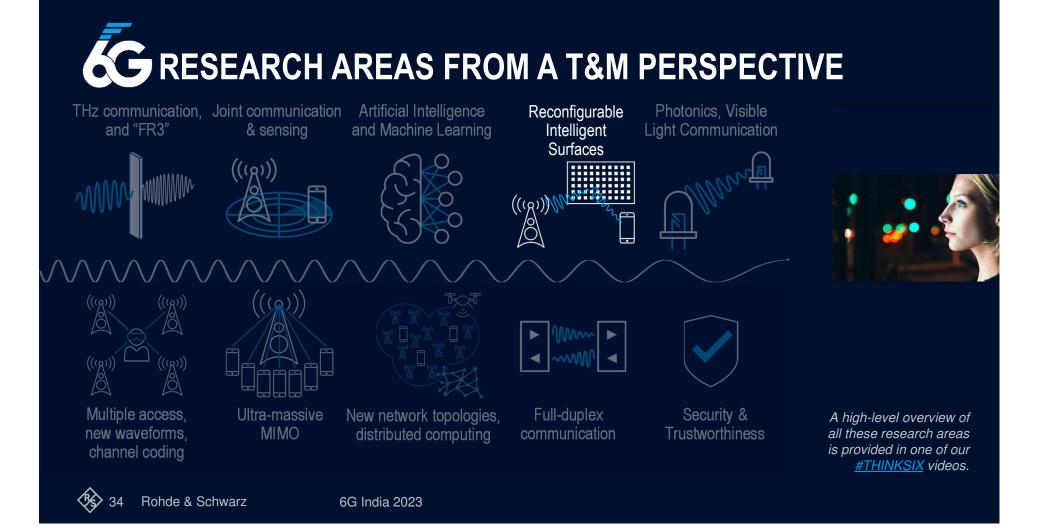
PHASE 2: APPROACHING PERFORMANCE CLOSE TO PERFECT CHANNEL KNOWLEDGE



Source: https://aiforgood.itu.int/events/the-road-towards-an-ai-native-air-interface-for-6g/ [Nov 2020]

TOWARDS 6G PHASE 2: NEURAL RECEIVER FOR 5G NR PUSCH MU-MIMO SCENARIO


Status of AI/ML in wireless communication: Academia & Research


PHASE 3: TRANSITION TO AN AUTOENCODER, OR?

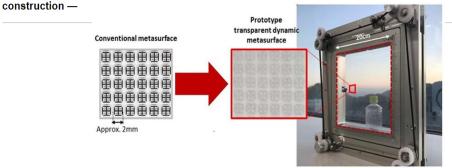
Channell Scraintfrig Moduation Mappinglig Of CML Signall Trans-Cover Profit RF Antenna Modern (baseband processing) Of CML Signall Transcover Profit RF Antenna Channell Originally Operationally Signally Signally Transcover Profit RF Antenna Channell Operationally Operationally Signally Signally Transcover Profit RF Antenna Channell Channelly Channelly Signally Signally Mathing Lannelly Lan

The autoencoder challenge

► Learning the behavior of an End-to-End (E2E) communication link via an autoencoder

ADJUST THE CHANNEL – ALONG WITH THE SIGNAL

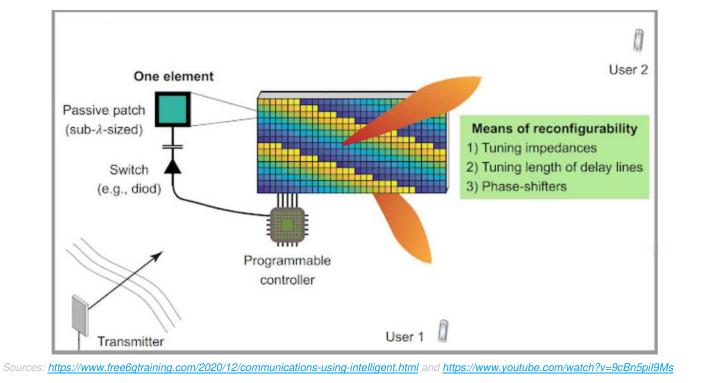
$$r(t) = \frac{h(t)s(t)}{h(t)} + n(t)$$

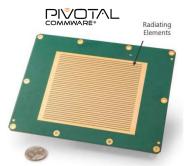

- The classical approach to maximize reception quality:
 - Adapt s(t) transmission scheme to target channel h(t), e.g., CP-OFDM for the multipath channel, carrier frequency, and bandwidth, pre-coding/equalization, modulation and coding schemes, etc.
- IRS offers an adaptation of channel h(t) to maximize reception quality.

Press Release

https://www.nttdocomo.co.jp/english/info/media_center/pr/2020/0117_00.html January 17, 2020

DOCOMO Conducts World's First Successful Trial of Transparent Dynamic Metasurface

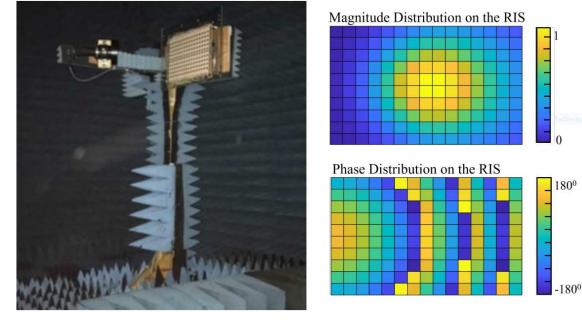

- Dynamic wave manipulation and high transparency expected to optimize 5G network



Prototype of transparent dynamic metasurface

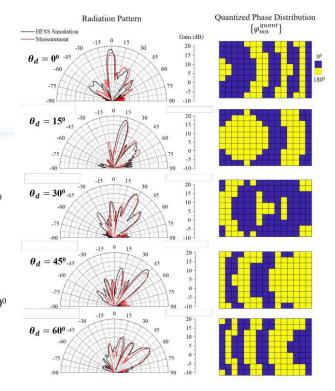
Rohde & Schwarz

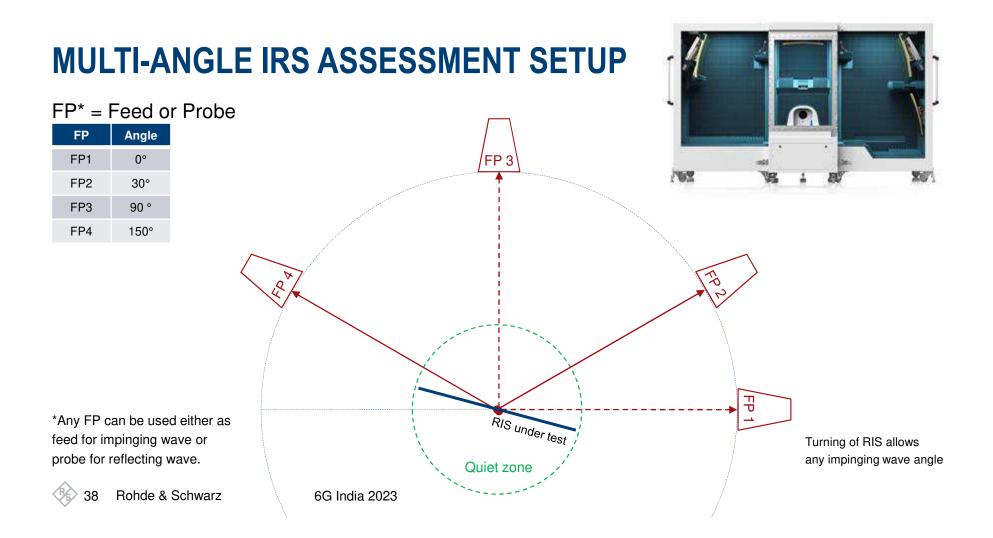
INTELLIGENT REFLECTING SURFACES OPERATION IN A NUTSHELL



36

Rohde & Schwarz 6G India 2023


INTELLIGENT REFLECTING SURFACES DESIGN AND EVALUATION



Source: Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment by Georgios C. Trichopoulos, Panagiotis Theofanopoulos, Bharath Kashyap, Aditya Shekhawat, Anuj Modi, Tawfik Osman, Sanjay Kumar, Anand Sengar, Arkajyoti Chang, and Ahmed Alkhateeb

Rohde & Schwarz

ROHDE & SCHWARZ CURRENT 6G ENGAGEMENTS WITH ACADEMIA & INDUSTRY

SUMMARY

- Deployment of 5G networks is in full swing! Clear evolution path provided by the industry's standardization organization
- Academia and key industry players are exploring the boundaries and started looking into next generation of wireless communication aka 6G
- New, challenging technology components may complement the existing concept of cellular networks or even provide revolutionary aspects
- Rohde&Schwarz is actively engaged in this phase of fundamental research, providing our expertise in test and measurement to make ideas real

Rohde & Schwarz