Best Practices for Designing and Deploying Robust VoLTE networks

Architectural Alternatives, and Product Choices

Vivek Bhargava
Director, Product Marketing
Oracle Communications
3 Questions in This Session

1. How did we get to VoLTE?
2. What are the challenges of building a functional and robust VoLTE network?
3. What are the architectural and product choices available for overcoming these challenges?
Core Network Evolution - GSM

- GSM covered both the RAN and the core network supplying Circuit Switched Telephony

- Over time the need to support IP traffic was identified and the GPRS system was created

- Packet-switched core was developed
Core Network Evolution – UTRAN

- Core Network reused much of the GERAN core network and added IU-CS and IU-PS interfaces that represented one common way to access the network.
- GSM/GPRS and WCDMA/HSPA form the basis for the evolution towards Evolved Packet Core.
Basic EPC Architecture
VoLTE Components

- VoLTE – only way in 4G/LTE networks to deliver voice services
- Just another data service - fully IP based with no CS components
- Solution based on IMS/MMTEL architecture
- Utilizes both SIP and Diameter signaling
VoLTE-VoWiFi Key Components

- **Part of Oracle Portfolio**
- **3rd Party Product**

Diagram showing various components such as:
- **UE**
- **SGW**
- **LTE RAN**
- **WLAN RAN**
- **MSG (ePDG)**
- **P-GW**
- **DSR (DRA)**
- **PM (PCRF)**
- **MGCF**
- **IMS-MGW**
- **CS Networks (PSTN)**
- **ENUM**
- **EAGLE (NP & NP IWF)**
- **BRM (CDF)**
- **BRM (OCS)**
- **MRF**
- **ECAS (TAS & SCC-AS)**
- **JSR 309**
- **ISC**
- **HSS**
- **CAS-SC (IM-SSF)**
- **SBC (IBCF)**
- **IP Networks**

These components are interconnected with various interfaces such as Gm, Gx, S2b, Rx, Ro, and Rf.
VoLTE Building Blocks

<table>
<thead>
<tr>
<th>Network Element(s)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-CSCF, E-CSCF, IMS-AGW</td>
<td>Network edge security, interoperability enablement, regulatory compliance and media anchoring</td>
</tr>
<tr>
<td>S-CSCF</td>
<td>Provides Session Routing functions and Service Invocation logic</td>
</tr>
<tr>
<td>TAS and SCC-AS</td>
<td>Provides IR.92/IR.94 Supplementary Services (e.g. Call Diversion, Call Barring, Multi-Party Conferencing) and Call Continuity support (i.e. SR-VCC)</td>
</tr>
<tr>
<td>PCRF</td>
<td>Provides Network Resources mediation for the IMS Network and the (e.g. QoS reservation) and Charging Control rules</td>
</tr>
<tr>
<td>ePDG</td>
<td>Provides an anchoring to the EPC network for the non-3GPP untrusted accesses (WiFi)</td>
</tr>
<tr>
<td>MRF</td>
<td>Media Resource Function responsible for Announcements playing (i.e. in Call Barring) and Media Mixing for Conferencing (e.g. Multi-Party calls)</td>
</tr>
<tr>
<td>MGCF, IMS-MGW</td>
<td>Media Gateway and respective Control function to secure IP Voice (RTP and SIP) interworking with CS Voice (TDM and SS7)</td>
</tr>
<tr>
<td>HSS, ENUM</td>
<td>Subscriber Data base, mainly responsible for IMS Subscriber authentication, Mobility Management and Service Profiles; IMS network Call Routing enabler and Number manipulation</td>
</tr>
<tr>
<td>Challenges</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Architectural complexity</td>
<td>There are many IMS interfaces, protocols, and components</td>
</tr>
<tr>
<td>QoS and location recovery</td>
<td>Complex integration with PCRF of multiple elements to ensure QoS and location retrieval</td>
</tr>
<tr>
<td>Integration with legacy</td>
<td>Many popular services continue to be in legacy SS7 networks with no clear way for access them from IMS. Also required for call continuity</td>
</tr>
<tr>
<td>Integration with other vendors & UEs</td>
<td>VoLTE networks are built with equipment from different vendors. UEs from a number of vendors need to be supported</td>
</tr>
<tr>
<td>Linear scalability from a few to millions of subscribers</td>
<td>Operators like to start small but grow linearly to millions in a controlled manner</td>
</tr>
<tr>
<td>Wire rate encryption and high capacity transcoding</td>
<td>VoLTE mandates use of IPSec tunnels using IMS-AKA encryption. Transcoding may be required for interconnects, PS to CS handoff, etc.</td>
</tr>
<tr>
<td>Regulatory</td>
<td>Several requirements such as emergency calling, local number portability, and lawful interception need to be built-in from day one</td>
</tr>
</tbody>
</table>
Key Considerations in VoLTE Deployments

- Easy to use Network Service Design
- Voice Call Continuity and IMS Service Centralization
- Scalability
- Crucial for NFV with IP front end load balancing
- Regulatory Compliancy
- Interconnect & Roaming
- Security
- Quality of Experience
VoLTE Strategy: High Performance Purpose-Built

• Add to your existing purpose-built network

• Pros & Cons
 – Uncompromised and predictable performance
 – Leverage years of experience
 – But, potentially viewed as legacy

• How
 – Choose products that facilitate easy migration to NFV (cap-and-go not rip-and-replace)
 – Assured coexistence
 – Hybrid MANO
VoLTE Strategy: Flexible, Virtualized, and Cloud Oriented

• Start a greenfield or take steps to transform your existing appliance network to NFV

• Pros & Cons
 – Future oriented – gain from coming technological innovations
 – But, lack of standards and potentially immature products could add to risk

• How
 – Since this is a “multi-disciplinary” technology, choose well established vendors with deep telecom, IT, and cloud expertise
VNFs – Reality & Promise

1. Forklift VNFs
 – Simply porting network-appliance code onto a virtual machine does not make it ready for NFV. Instead, it adds an extra layer of complexity, causing significant performance degradation.

2. NFV is too complex and costly
 – 67% of operators cite integration as a barrier to NFV deployment.

3. Physical and virtual do not coexist
 – Utilizing VNFs means building and managing an additional network in parallel with the existing physical network.

1. Network function code has been built from the ground up to be cloud-native. VNFs need to:
 – Leverage a microservices architecture
 – Dynamically adjust compute and network resources
 – Support full lifecycle orchestration to achieve automation

2. Rapid VNF Onboarding
 – Select well-enabled VNFs, which include all the technical and business data needed to allow same-day onboarding and deployment.

3. Hybrid MANO
 – Leverage an NFV-management and orchestration architecture that makes the most of the capabilities and coexistence of physical and virtual functions.
Creating VoLTE & VoWiFi Services on Demand

Oracle OSS/BSS Suite

Oracle Service and Network Orchestration Solution

Lifecycle Management

Radio Access Network

Internet

Network Monitoring & Management

Virtualized and Orchestrated IMS Core

Interconnect Partners and Media Gateways

Other IP Networks

PSTN

PNF

VNF

Service Order
VoLTE Strategy: Pay-as-you-go Managed Service

- Leave the hard work for others
- Pros & Cons
 - Best of breed and proven components pre-integrated for smooth deployment
 - Budget-friendly pay-as-you-go growth model (graduated deployments means lower costs/capacity in early stages)
 - Someone else manages your core competency & user satisfaction
- How
 - Find a reliable provider - Oracle + Tech Mahindra
Oracle Communications Service Provider Portfolio

- SIP Application Execution
- IMS-Legacy integration
- API Exposure and Control

- Core Session Management
- IMS S/I-CSCF
- Session Routing

- Edge Session Management
- IMS P/E-CSCF
- Security, Quality, Interworking

- Small Cell & WiFi Access
- Secure Tunnel Termination
- Secure Backhaul

Platforms: Acme Packet Appliances, COTS, Common NFV, Transcoding, Compliance
Oracle Communications Key VoLTE Products

• Session Border Controller
 – Security, interoperability, regulatory, media processing, QoS, interconnect & roaming, voice call continuity
 – P/E-CSCF, IMS-AGW, ATCF, ATGW, IBCF, TrGW

• Evolved Communications Application Server
 – IR.92/IR.94 supplementary services and call continuity; IMS Centralization Services; GSM, MMTel Supplementary Services
 – TAS, SCC-AS

• Core Session Manager
 – SIP session management and coordination with other network entities for session control
 – S/I-CSCF, BGCF

• Policy Management
 – Network resource mediation, charging control rules, programmable multimedia policy, configuration management platform, subscriber profile repository
 – PCRF
Oracle Communications Key VoLTE Products

• Mobile Security Gateway
 – Security for non-3GPP access such as WiFi; Small-Cell; WiFi backhaul
 – ePDG

• Session Delivery Manager
 – Full FCAPS (fault, configuration, audit, performance, security) element system management; report generation; software upgrades

• Diameter Signaling Router
 – Secure signaling architecture for elastic growth, interoperability and rapid introduction of new services, enhances network visibility by providing a centralized monitoring point
 – DRA

• Operations Monitor
 – Deep visibility into network operations, rapid troubleshooting, growth planning, voice quality analysis and reporting, SLA enforcement
Vodafone Germany
First virtualized IMS network for VoLTE services

- VoLTE service launch & SR-VCC in Q1 2014
- Oracle involvement in E2E network design and implementation
- 3x Site Geo-Redundant solution for 1.2M subscribers in the initial phase
- A-SBC clustering (w/ SLB) to create a logical single entity A-SBC/P-CSCF distributed over multiple sites
- First VoLTE launch within the Vodafone Group
- First NFV Core Network implementation within the Vodafone Group
Vodafone Group
IMS For Messaging

• Access SBC: 56x AP6300
• SLB: 8x HA pairs of AP4500
• Interconnect SBC: 1x HA pair of AP6300
• CSCF: 90x CSM HA VM
• OCOM 1x ME, 1x Standalone Probe and 18x Embedded SBC probes, used for both network monitoring and Sub usage measurement
• OCSDM single cluster used for Element Management
• Installed Capacity for 15M registered subs (>9M active users already). Live since early 2015
Telefonica Digital
IMS for VoWiFi and Messaging

- OTT service for Voice, Chat, file sharing, location sharing
- Based on Oracle Communications USM, SBC, SLB, SR
- Based on home-based client for iPhone, Android, PC, MAC, Windows Phone
- OCUSM used as P-CSCF with IMS-AKA termination
- 3M subs in UK
- 4M subs in LATAM affiliates
Why Oracle Communications?

- **Unparalleled in IT**
 - Industry Applications
 - HW/SW Platforms
 - Robust Portfolio
 - Analytics

- **Network Depth**
 - Servers & Gateways
 - Session Control
 - Signaling
 - Policy

- **Trusted Ally**
 - Global Reach
 - Partner Network
 - Reliable Support
 - Expert Consulting
 - Industry Leadership

- **Corporate**

- **Cloud Focus**
 - SDN/NFV
 - Telco Cloud
 - IaaS, PaaS, SaaS
 - Private, Public, Hybrid

- **IT Expertise**

- **Network Heritage**
Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Integrated Cloud
Applications & Platform Services